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Existing data on building destruction in conflict zones rely on
eyewitness reports or manual detection, which makes it gen-
erally scarce, incomplete, and potentially biased. This lack of
reliable data imposes severe limitations for media reporting,
humanitarian relief efforts, human-rights monitoring, reconstruc-
tion initiatives, and academic studies of violent conflict. This
article introduces an automated method of measuring destruction
in high-resolution satellite images using deep-learning techniques
combined with label augmentation and spatial and temporal
smoothing, which exploit the underlying spatial and temporal
structure of destruction. As a proof of concept, we apply this
method to the Syrian civil war and reconstruct the evolution of
damage in major cities across the country. Our approach allows
generating destruction data with unprecedented scope, resolu-
tion, and frequency—and makes use of the ever-higher frequency
at which satellite imagery becomes available.

conflict | destruction | deep learning | remote sensing | Syria

Building destruction during war is a specific form of vio-
lence that is particularly harmful to civilians, commonly

used to displace populations, and therefore warrants special
attention. Yet, data from war-ridden areas are typically scarce,
often incomplete, and highly contested, when available. The
lack of such data from conflict zones severely limits media
reporting, humanitarian relief efforts, human-rights monitoring,
and reconstruction initiatives, as well as the study of violent
conflict in academic research. A novel solution to this prob-
lem is to use remote sensing to identify destruction in satellite
images (1–3). This approach is gaining momentum as high-
resolution imagery is becoming readily available at ever-higher
frequency, yielding weekly, or even daily, images. At the same
time, recent methodological advances related to deep learning
have provided sophisticated tools to extract data from these
images (4–7).

While seminal research has demonstrated the use of auto-
mated classifiers for destruction detection, practical applications
have so far been hampered by severe problems with labeling,
domain transfer, and class imbalance in real-world imagery from
urban war zones. As a consequence, international organizations
such as the United Nations, the World Bank, and Amnesty Inter-
national use remote sensing with manual human classification to
produce damage-assessment case studies (8–10). On the other
hand, providers of conflict data for research purposes still rely
heavily on news and eyewitness reports, which leads to large
data-publishing lags and potential biases (11–17). An automated
building-damage classifier for use with satellite imagery, which
has a low rate of false positives in unbalanced samples and allows
tracking on-the-ground destruction in close to real-time, would
therefore be extremely valuable for the international community
and academic researchers alike.

In this article, we present a way of combining computer-vision
techniques and publicly available high-resolution satellite images
to produce building-destruction estimates that are of practical

use to both practitioners and researchers. The standard architec-
tures for this task are convolutional neural networks (CNNs),∗

as they have achieved unprecedented success in large-scale visual
image classification with error rates beating humans (18, 19). We
train a CNN to spot destruction features from heavy weaponry
attacks (i.e., artillery and bombing) in satellite images, such as
the rubble from collapsed buildings or the presence of bomb
craters.

We make three relevant methodological contributions. First,
we introduce a label-augmentation method for expanding
destruction class labels by making reasonable assumptions about
the data-generating process using contextual information. Sec-
ond, we introduce a two-stage classification process to control for
spatial and temporal noise where the results from the CNN are
processed through a random-forest model that relies on spatial
and temporal leads and lags to improve classification perfor-
mance. Third, we apply our trained computer-vision model to
repeated satellite images of the entire populated areas of major
Syrian cities, including parks and highways, and produce longi-
tudinal estimates of building destruction over the course of the
recent civil war.

We demonstrate that our method yields high performance
in out-of-sample tests and validate its ability for destruction

Significance

Satellite imagery is becoming ubiquitous. Research has
demonstrated that artificial intelligence applied to satellite
imagery holds promise for automated detection of war-
related building destruction. While these results are promis-
ing, monitoring in real-world applications requires high pre-
cision, especially when destruction is sparse and detecting
destroyed buildings is equivalent to looking for a needle
in a haystack. We demonstrate that exploiting the persis-
tent nature of building destruction can substantially improve
the training of automated destruction monitoring. We also
propose an additional machine-learning stage that leverages
images of surrounding areas and multiple successive images
of the same area, which further improves detection sig-
nificantly. This will allow real-world applications, and we
illustrate this in the context of the Syrian civil war.
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monitoring using a separate database of heavy weaponry
attacks. Our results highlight the importance of repeated
satellite imagery in combination with temporal filter-
ing to improve monitoring performance. As a result, our
approach can be applied to any populated area, provided that
repeated, high-resolution (i.e., submeter) satellite imagery is
available.

Why Automated War-Destruction Monitoring Is Hard
Several studies have demonstrated the use of computer vision
on satellite imagery to identify different types of destruction
(2, 3, 20–26). In many cases, this is destruction from natural
disasters, which tends to be spatially concentrated. While perfor-
mance results from the literature are encouraging, they typically
focus on evaluations at one point in time and training/validating
on datasets composed of equal numbers of damaged and
undamaged images.

Precision performance in repeated destruction scans of entire
cities with heavily unbalanced classes, as in our application, have
not been explicitly presented in the literature so far. Part of the
reason for this gap is that automated methods need to be able
to detect building destruction in an empirical context, where the
vast majority of images do not feature destruction. Class imbal-
ance is a common problem in machine-learning applications, but
the detection of destruction in war zones faces an extreme level
of imbalance. Even in a city that suffered as much destruction
as Aleppo, only 2.8% of all images of populated areas con-
tain a building that was classified as destroyed by the United
Nations Operational Satellite Applications Program (UNOSAT)
in September 2016.

Fig. 1 depicts this quite clearly. In Fig. 1A, we see the
full extent of Aleppo, with all destroyed building annotations
depicted as red dots. Fig. 1B zooms into the central area of
Aleppo, just east of the historic Citadel, which was heavily
attacked. The red dots coincide clearly with patterns of destruc-
tion from heavy weaponry attacks in the satellite images. But
destruction only affected a small fraction of buildings, even in
this heavily affected part of the city.

With such class imbalance, even a small false positive rate
(FPR) will result in an unacceptable absolute number of false-
positive predictions in applications, which would yield destruc-
tion data that are practically useless due to high measurement
error. A simple example illustrates this: Suppose we have 100,000
sample images, of which 1,000 are destroyed. A “low” FPR of
15% together with a true positive rate (TPR) of 90% implies
that the classification model will produce 14,850 false positives
and 900 true positives, resulting in a precision below 6%. In
other words, conditional on predicting destruction, such a clas-
sifier would be wrong more than 94% of the time. Note that the
same classifier produces a “high” precision score of 86% on a 1:1
balanced sample.

The task of automated monitoring over time is typically fur-
ther complicated by a lack of training data, i.e., the low number
of destruction labels available in any given city. This can quickly
lead to overfitting in machine learning, as the training set consists
of a narrow selection of building types, neighborhoods, sun and
satellite angles, and changing vegetation or weather phenomena
like snow and cloud coverage. These problems are known as spa-
tial and temporal domain shift (27). Temporal domain shift is
a particularly serious problem in our application, as destruction
monitoring requires the generation of a reasonable timeline with
repeated scans of the same city. This emphasizes the need for a
robust solution to this problem that ensures some comparability
across time.

Our approach aims at solving these problems. We exploit the
time dimension of the images and labels to alleviate the domain-
shift problems and extreme class imbalance. We also make a
point of reporting precision performance in unbalanced sam-

ples to provide realistic insights into the potential performance
in applications.

Methods
Satellite Data. Most of our sample comes from Aleppo, which we use as our
main proof-of-concept due to the size of the city and the high availability
of repeated images and labels. To train and evaluate our model, we used
22 high-resolution satellite images from Aleppo and a total of 42 images
from five other Syrian cities (Table 1). All images used in this analysis were
obtained from Google Earth (28); were georeferenced and orthorectified;
and feature three bands (red, green, blue), as well as a ground sampling
distance of circa 50 cm per pixel.

Sample images cover the period 2011 to 2017, after the onset of the
civil war in Syria, during which extensive destruction from heavy weaponry
attacks occurred across all sample cities. We used an additional, early image
for each city (for example, June 26, 2011, in Aleppo) as the “pre” image and
call the later 64 images as the “post” images. Our method relies on change
detection—i.e., when classifying images, the preimage is compared to the
respective postimage.

To move as close as possible to the automated monitoring task, we trans-
formed all images into millions of 64 × 64 pixel subimages that we call
patches. These patches are the unit of observation for training and testing
and the final step, which we call scanning or dense prediction, in which the
classifier is used to produce fitted values for every patch in the study areas.
Ground area coverage of each patch can vary slightly, but is approximately
1,024 (i.e., 32 × 32) square meters. Importantly, the size of a specific patch
remains constant over time.

Column (2) in Table 1 reports the sample size in terms of patches for
the six cities in our sample. For Aleppo, for example, we have over 95,000
patches per image times 22 images, which gives approximately 2.1 million
patches. Importantly, this is panel data, where images of the same patch are
repeated 22 times.

Destruction Labels. We combine the imagery data with georeferenced
building damage labels from the UNOSAT of the United Nations Institute
for Training and Research (UNITAR) (8). Over the course of the Syrian civil
war, UNOSAT produced building-destruction annotations by manual inspec-
tion of satellite images for severely affected Syrian cities. For Aleppo, these
manual assessments were conducted at four different dates, one each year
between 2013 and 2016. Column (3) in Table 1 reports the number of these
assessments.

UNOSAT damage annotations were categorized into three degrees of
damage: moderate and severe damage, as well as completely destroyed.
In our analysis, we rely on the latter class due to the fact that
destruction patterns for the other labels were not always clearly visi-
ble in the satellite images. Our method classifies the satellite images
as destroyed if at least one UNOSAT annotation of destruction is inside
a patch.

Our analysis of building destruction focuses on the urban areas of
Syrian cities. For Aleppo, this is depicted by the area enclosed by the
yellow line in Fig. 1. Areas enclosed by magenta lines correspond to
so-called “no analysis” areas, which have been left out by UNOSAT in
their damage annotations due to these zones hosting noncivilian build-
ings. Consequently, these areas are also excluded from the training pro-
cess. But we scan these areas and make use of these scans for out-of-
sample validation. Sample image patches for destroyed areas predestruction
and postdestruction are presented in SI Appendix, Fig. S1, and nonde-
stroyed ones, including damaged buildings, are shown in SI Appendix,
Fig. S2.

The ideal annotation dataset to analyze this problem would be composed
of pixel-wise classification of all damaged and nondamaged buildings across
the sample cities for all time periods. Labels like this could then be used to
train models to identify the footprint of destroyed buildings using satel-
lite images (3, 22). However, because of the significant cost of annotating
destruction footprints, UNOSAT only provides point coordinates (centroids)
of destroyed buildings. We matched these point labels to our image patches
by attributing a label to the closest patch centroid. One issue with this
method of generating labels is that buildings have different sizes, and,
therefore, some UNOSAT labels are surrounded by more visible destruction
than others. We address this issue through a second stage, described below,
in which we exploit spatial information.

Contextual Label Augmentation and Test Sample. The computer-vision task is
to train an algorithm to detect destruction from the visual bands of high-
resolution daylight satellite images. Training deep-learning architectures
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Fig. 1. Imagery of Aleppo on September 18, 2016. Red dots indicate UNOSAT annotations as destroyed. Areas enclosed by magenta lines are no analysis
zones, excluded from the UNOSAT damage assessment due to being noncivilian. The yellow line encloses the populated areas of Aleppo under analysis.
Sources: Google Earth/Maxar satellite imagery and UNITAR/UNOSAT damage annotations. A shows an overview of the urban area of Aleppo. B shows an
area in central Aleppo close to the Citadel.

typically requires large training datasets, including thousands of labels,
which are extremely rare in our empirical context.

Consequently, as reported in column (3) of Table 1, we have a maximum
of four UNOSAT annotation dates to work with for certain cities, and for

others, three or only two (i.e., Homs). Compared to the number of annota-
tions, we usually have significantly more raw images available, as shown in
column (1). In addition, few label dates perfectly coincide with the date of a
satellite image. This generates an “uncertain class,” in which patches cannot
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Table 1. Sample overview

(3) (4) (5)
(1) (2) Total Total Share

Total Total labeled labeled destroyed
City images patches images patches patches, %

Aleppo 22 2,106,412 4 1,626,920 1.83
Daraa 13 202,462 4 125,231 1.00
Deir-Ez-Zor 7 98,602 4 84,723 2.86
Hama 9 285,057 3 224,365 3.73
Homs 5 200,035 2 83,941 8.26
Raqqa 8 180,184 3 112,481 1.96
All 64 3,072,752 20 2,257,661 2.26

Note: Column (1) reports the number of “post” satellite images/time
periods, excluding the first preimage for each city. Column (2) reports
the resulting number of patches in the populated areas of the respec-
tive city based on available imagery. Column (3) refers to the number of
images/time periods for which UNITAR/UNOSAT labels are available. Col-
umn (4) is the number of patches for which UNITAR/UNOSAT damage labels
for the “destroyed” class are available after label augmentation. Column
(5) is the share of destroyed labels over the number of labeled patches.
Sources: Author calculations based on Google Earth/Maxar satellite imagery
and UNITAR/UNOSAT damage annotations.

be attributed clearly to either the destroyed or not-destroyed class because
destruction could have occurred between the labeling date and the date of
the image.

To increase the number of labeled data points, we exploit the fact
that reconstruction was largely absent in the areas of interest during
the study period between 2013 and 2017 (SI Appendix, Table S4). Our
label-augmentation approach assumes that positive samples at time ti also
remained positives at subsequent times tj > ti , i.e., that destruction per-
sists throughout the period of the civil war. And, conversely, that negative
samples at time tj also had to be negatives at times ti < tj .

We solve two problems using this approach. First, we expand the size of
our training dataset by boosting the number of labels to close to 2.3 million,
of which approximately 51,000 show destruction. Second, by including addi-
tional time periods in our training sample, we improve the performance of
our classifier in its ability to handle domain shift. Our method of label aug-
mentation is conservative, given that we assign missing values to all patches
that remain in the uncertain class—those for which we cannot know with
certainty whether destruction has occurred in the past or those for which
we do not know with certainty that they will be labeled not destroyed in
the future.

Fig. 2 illustrates our method for generating training and test samples.
Given the temporal and spatial structure of the data, extra care must

be taken when splitting the sample for training and testing to avoid
overfitting. Standard cross-sectional cross-validation procedures are not
appropriate since they could show the network patches from different
times, but the same location, in training and testing. We therefore used
the patch identifier to perform sample splitting, whereby 70% of patches
are reserved for training and 30% for testing across temporal periods. All
performance measures reflect accuracy as measured from data reserved in
the test set.

CNN Architecture and Two-Stage Classification Procedure. Another innova-
tion in our approach is the use of a two-stage classification procedure
that feeds the predicted destruction estimates from the initial CNN model
into a random-forest classifier. With respect to the CNN architecture, we
experimented with several different types of CNNs. For each of these, we
optimized hyperparameters according to accuracy results in the validation
set. The results of these experiments suggested the use of a relatively flat
CNN architecture, as described in SI Appendix, section 1.

To the output of the CNN model, we applied a second machine-learning
stage, intended to exploit the temporal and spatial clustering of destruc-
tion. Specifically, the labels and predicted values from the CNN are used to
train a random-forest model that relies on information from two spatial lags
around each patch location and two temporal leads/lags around each date.
The random forest uses these spatial and temporal features from the raw
CNN scores plus the spatial SD to generate a prediction for the test sample
and the dense prediction.

The logic behind this second-stage approach is that destruction is not
only serially correlated, but also spatially clustered. We separated this step
from the deep-learning stage for maximum flexibility and modularity. This
allows us to vary the information set that we used in the second-stage
model. In particular, we experimented with using only spatial information
and different temporal lag structures and discuss their relative importance
below.

Data Generation. As a final step, we trained the second stage on all available
data and predicted values for every patch-period combination in our data.
This simulates the data-generation problem where the trained architecture
is used to interpret all patches at all points in time, including those patches
that had missing labels. The result is what we call dense predictions, and this
forms the raw material for additional validation exercises. As reported in
column (2) of Table 1, the result is a panel dataset of destruction predictions
at the patch level for six cities with varying time periods with over 3 million
patch-time observations.

Results
Overall Performance. Our first-stage CNN classifier achieves an
area under the curve (AUC) of 0.86 in the test sample of the
first stage (i.e., with the raw output from the CNN) and an

Fig. 2. Image sampling and prediction process. The timeline shows 23 Aleppo images. The first image, from June 26,2011, is used as a prewar image when
training the classifier. All the other 22 images are used as postimages. Images are split into over 95,000 patches, which serve as a unit of analysis and are
separated into test and training sample before the analysis. Labels for the patches come from UNITAR/UNOSAT annotation dates shown as black dots on
the timeline. Annotations are extended forward and backward in time beyond these dates under the assumption that buildings that are labeled destroyed
at some point remain destroyed throughout the period of observation. Those that are labeled as not destroyed at a given time were not destroyed before.
Patches that are not destroyed at an annotation date, but are destroyed at a later annotation date, have an unknown class. All patches that are not classified
as destroyed in the last annotation date are of unknown class (set to missing) after that date.
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AUC of 0.92 after the second-stage random-forest procedure
(SI Appendix, Fig. S4). The associated receiver operating char-
acteristic (ROC) curve implies that a TPR of 0.8 is associated
with an FPR of 0.17. At a more conservative, higher threshold
for a positive classification, a TPR of 0.5 is associated with an
FPR of only 0.025. However, the class imbalance is extremely
relevant here. The ROC curve and its AUC are classification
performance measures that are not affected by class imbalance
in the sample and, therefore, do not allow us to discuss the
impact of class imbalance in our sample. In what follows, we,
therefore, focus on precision statistics to highlight the problem
of unbalanced classes in applications of automated destruction
detection.

Fig. 3 summarizes our main results across cities. Fig. 3A
presents two precision-recall curves from the test sample that
depict the out-of-sample performance of our classification
approach. The dashed orange curve plots the precision-recall
trade-off in the balanced sample. The average precision here
is 0.86, and the curve suggests a very mild trade-off with a
precision of over 0.9 at a recall rate of 0.5, for example. In con-
trast, the solid blue line depicts the performance of the same
model when taking into account unbalanced classes that the
automated destruction detection would face in the actual appli-
cation in the test sample. Clearly, precision is much lower with
the average precision being a mere 0.24. For a recall rate of 0.5,
the first stage reaches a precision of below 0.2. This illustrates

C

A B

Fig. 3. (A) Precision-recall curve, unbalanced versus balanced sample. Reported performance is in the 30% training sample either by up-sampling the
positives to reach a 1:1 sample (orange curve) or by evaluating at the original sample proportions (blue curve). (B) Precision-recall curve, unbalanced sample.
First-stage model versus two alternative second-stage models. As in A, the blue curve shows performance after the first stage. The dashed maroon curve
shows performance after the second stage, which uses training of a random forest on temporal and spatial leads and lags in the training sample. The
dotted purple curve shows performance when using only spatial lags and no additional temporal information. (C) Average second-stage dense patch-wise
destruction-prediction scores for Aleppo city, Syria. Green color indicates low prediction scores, and red color indicates high prediction scores. Color bins
reflect deciles of second-stage fitted values with full spatial and temporal smoothing. Sources: Google Earth/Maxar satellite imagery, UNITAR/UNOSAT
damage annotations, and author calculations.
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impressively how class imbalance in real application can change
the precision-recall trade-off in this exercise.

In Fig. 3B, we illustrate the improvement in precision that
we achieve by applying the second stage. The figure compares
precision-recall curves for the first stage (solid blue line), as in
Fig. 3A, with the improvements from the second-stage models,
all evaluated in the unbalanced test sample. The second-stage
average precision increased to 0.29 with only spatial smoothing
(dotted purple line) and 0.43 with temporal and spatial smooth-
ing (dashed maroon line). This highlights a key insight from our
experiments with the modular second stage. The use of tempo-
ral smoothing is absolutely crucial for reaching better precision
in the second stage. The gains of the spatial smoothing are rele-
vant in some cases, but the real boost in performance arises when
using temporal information to validate predictions coming out of
the first stage.

In Fig. 3C, we show an example of the final output of our
methodology—the continuous dense prediction scores gener-
ated from the second stage. The figure shows the average patch-
wise dense predictions across the entire city of Aleppo, including
no-analysis zones. Red color indicates high predicted scores, and
green indicates low scores. Generally, the red areas coincide with
the destruction annotations in Fig. 1. In addition, roads and parks
are clearly visible as dark green (lowest destruction probability)
or yellow patches. This is not only evidence of the power of our
approach in picking up housing destruction, but it also shows
how the classifier has learned that roads and parks are never
destroyed buildings.

The Role of the Second-Stage Module. The second stage plays a
key role for boosting performance to levels that imply practical
gains from automatizing destruction monitoring in our sample.
It is important to consider that, while the cities in our sample are
all in the same country, they are of different sizes, have different
building types, and are situated in different landscapes with a
variety of vegetation and seasonal changes. In addition, label and
image availability differ dramatically. As shown in Table 1, the
vast majority of images in our sample come from Aleppo due
to its large size and elevated image availability—less than one-
third of all images come from other cities (SI Appendix, Table
S3 summarizes the results from training on Aleppo exclusively).
If our approach can adapt to these very different conditions, it
means we can be optimistic about applications elsewhere.

Table 2. Model performance when varying second-stage module
in the unbalanced sample

(1) (2) (3) (4)
First-stage Second-stage

(CNN) (CNN + RF)

With spatial With spatial
With spatial and temporal and temporal

Raw leads/lags leads/lags leads/lags
City Precision Precision Precision AUC

Aleppo 16.1 16.9 35.7 91.5
Daraa 4.2 4.6 11.7 89.0
Deir-Ez-Zor 11.0 12.1 21.7 80.0
Hama 54.5 65.2 68.0 91.0
Homs 25.8 34.9 55.2 85.7
Raqqa 12.8 17.4 32.1 87.6
All 24.5 28.7 42.5 90.7

Notes. First-stage predictions from CNNs and second-stage predictions
from random-forest model (CNN + RF) with spatial leads/lags (column 2)
and spatial and two temporal leads/lags (columns 3 and 4). Columns (1)–(3)
report the average precision and column (4) the AUC. Sources: Author calcu-
lations based on Google Earth/Maxar satellite imagery and UNITAR/UNOSAT
damage annotations.

Table 2 provides details on the performance improvements
through the second-stage procedure by city. In column (1), we
report performance of the first stage by city. This reveals strong
differences in performance across cities, with average preci-
sion ranging from a mere 4.2% for Daraa to an impressive
54.5% for Hama (for corresponding precision-recall curves, see
SI Appendix, Fig. S5). To a large degree, this is driven by sam-
ple imbalances, where Daraa suffered only 1% of destroyed
patches, on average, whereas Hama suffered almost four times
as much.

The second stage boosts this performance substantially. This is
most notable for the worst-performing cities, for which precision
improves twofold to threefold in the full model (column 3). How
does the full model achieve this improvement in performance?
Table 2 confirms the role of the temporal smoothing shown in
Fig. 3. However, the city-by-city analysis also reveals interesting
differences across cities, where Homs and Hama seem to bene-
fit more from the spatial smoothing. In both cities, destruction
is indeed clustered heavily in some neighborhoods, so that this
clustering might be useful in reinforcing patch-wise predictions
in the second stage. Our predictions for Daraa, Deir-Ez-Zor, and
Aleppo rely much more on repetition and temporal smoothing.
We confirm the role of temporal smoothing in SI Appendix, Table
S5 by varying temporal lags and providing performance estimates
without spatial smoothing.

The improvements with temporal smoothing suggest that the
domain-shift problem across time plays an important role when
angles, lighting, vegetation, and seasons change. Our results
therefore highlight the potential role of repeated high-frequency
imagery and temporal smoothing for providing useful destruc-
tion monitoring. The extreme imbalance combined with small
samples imposes serious trade-offs for monitoring, but we will
show in the following section that monitoring can be brought
to work even in the case of Aleppo, which has one of the more
unbalanced samples in our dataset.

External Validation Exercises. We conduct two validation exercises
to illustrate the merits of our approach. We first make use of
the no-analysis areas in Aleppo (Fig. 1) that have been entirely
excluded from the training process. One of these zones corre-
sponds to the Ramouse neighborhood in the southernmost tip of
our study area in Aleppo—an area that our classifier identified
as heavily destroyed, as depicted in Fig. 3C.

In Fig. 4, we show satellite imagery from a subarea of the
Ramouse neighborhood at two points in time, before (Decem-
ber 6, 2016; A–C) and after (December 18, 2016; D–F) a major
heavy weaponry attack. We show raw satellite images (Fig. 4 A
and D), patch-wise visualizations of the second-stage continuous
prediction scores (Fig. 4 B and E), and a binary classification
(Fig. 4 C and F). Due to the classifier not having been trained on
this area, this exercise serves as a good out-of-sample validation
test. Visual inspection of the raw images shows no destruction
before (A), but extensive building destruction after the attacks
(D). Comparing the continuous prediction scores before (B) and
after the attack (E) shows a significant increase in predicted
destruction by our approach, which coincides clearly with the
locations of actual destruction of buildings in the area. Note
that the model also classifies correctly areas without building
destruction, such as the industrial compounds in the northeast
and southwest of the image, as not destroyed at both points
in time. The same applies to the fields and roads in the East
and the forest in the West. Fig. 4 A and D shows one way of
converting continuous prediction scores into a binary classifica-
tion. The threshold chosen here is optimized to reach a level of
50% recall in the test sample. One can observe that the before
period is consistently classified as nondestroyed (with one excep-
tion), whereas destruction is indicated in affected areas after
the attacks.
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Fig. 4. Example of raw satellite images (A and D) and second-stage patch-wise continuous predictions scores (B and E) and binary classification (C and F) for
the Ramouse neighborhood of Aleppo, Syria. Before (A–C) and after (D–F) heavy weaponry attacks are shown. Green color indicates low prediction scores,
and red color indicates high prediction scores. Color bins reflect deciles of fitted values. The binary classification cutoff was optimized to reach 50% recall in
the test sample. Satellite image recording dates: December 6, 2016 (before), and December 18, 2016 (after). Approximate image centroid location: 36.1525
decimal degrees north and 37.1332 east. Sources: Google Earth/Maxar satellite imagery and author calculations.

Fig. 4 demonstrates that the classifier is able to identify
destruction in parts of the city that were not part of the training
sample. This is important, as it shows that we are able to success-
fully solve the spatial and temporal domain-shift problems within
Aleppo and, thus, generate a time series of destruction data in
this way. If our automated method was to augment human mon-
itoring, this is the kind of data that would be passed to human
verification.

Given our strategy of expanding labels forward and backward
in time, it becomes particularly important to verify the abil-
ity of our approach to approximate the timing of destruction.
We therefore validated our dense predictions in an event-study
framework, which relies on an external dataset of georeferenced
bombing events in Syria. In particular, we relied on 731 bombing
events with precise location information from the Live Universal
Awareness Map project (LiveUAmap) (29). We merged these
events with our pooled sample of dense predictions at the patch-
time level. We then conducted an event-study regression on a
sample of over 2.8 million observations to test whether our pre-
diction scores increase in the aftermath of an externally reported
bombing event (see SI Appendix, section 2 for details).

We present a coefficient summary plot for two second-stage
modules in Fig. 5. The graph shows clearly that bombing events
are positively and significantly correlated to the destruction
scores at the time and patch levels. Note that the baseline haz-
ard of destruction, i.e., the mean of the dependent variable, is
very small in our sample (SI Appendix, Table S2). Compared to
the baseline level of the respective destruction score, the point
estimates imply an increase of 29% and 37%, respectively, after
a bombing event is reported in a given cell. This is a substan-
tial increase if one keeps in mind that not all bombing events
will result in the destruction of a building, introducing attenua-
tion bias in the regression. The figure also shows that temporal
smoothing implies big gains in overall signal strength, with the

coefficients from the full model represented by the red diamonds
being consistently above the spatial only model as depicted by the
blue squares.
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Fig. 5. Event-study calidation exercise pooled sample. External bomb-event
data from LiveUAmap is positively and significantly correlated with satellite
predicted war destruction at the patch level. The figure shows coefficients
from a regression of five leads and lags of bombing events identified in
the event data against our continuous destruction prediction score from
the second stage. Point estimates depicted by blue squares correspond
to second-stage continuous prediction scores with spatial smoothing only,
and red diamonds correspond to the full model with spatial and tempo-
ral smoothing. Error bars represent 95% CIs. The dashed line indicates the
occurrence of a bombing event in the event data, and coefficients cap-
ture the response in predicted damage. The full regression specification
and results are reported in SI Appendix, section 2 and Table S2, respectively.
Sources: LiveUAmap event data and author calculations.
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Discussion
Building destruction due to heavy weapon attacks is a particu-
larly salient form of war-related violence. Destruction is often
used as a military strategy to displace population and is respon-
sible for tremendous human suffering beyond the loss of life.
Likewise, organizations like the Red Cross warn that massive
destruction of urban infrastructure (also called urbicide) has dra-
matic knock-on effects on health, as it implies the destruction
of water and power supplies, as well as hospitals. Therefore,
reliable and updated data on destruction from war zones play
an important role for humanitarian relief efforts, but also for
human-rights monitoring, reconstruction initiatives, and media
reporting, as well as the study of violent conflict in academic
research. Studying this form of violence quantitatively, beyond
specific case studies, is currently impossible due to the absence
of systematic data.

Our method of identifying building destruction combines the
existing state-of-the-art computer-vision methods with an addi-
tional postprocessing step and exploits the time dimension of
destruction data to expand the training dataset. This allows us
to exploit the repetition of imagery to bring down error rates
when classifying destruction. Thanks to these advances, we were
able to achieve an AUC of above 0.9 and an average precision
of over 0.42 in the unbalanced sample from six Syrian cities. We
also show that our approach is able to identify the timing and
location of building destruction out-of-sample, i.e., in areas of
Aleppo that have not been used for training the classifier.

These results are encouraging and allow applicability for auto-
mated destruction classification and even close to real-time
tracking for policy purposes. Our method is particularly well-
placed to take advantage of the ever-increasing temporal gran-
ularity of imagery. Our calculations suggest that human manual
labeling of our entire dataset would cost approximately 200,000
USD, and additional repetitions of imagery would increase these
costs almost proportionally. With an automated method like
ours, higher image frequency helps precision and comes at only
marginal extra costs. However, our results also suggest limita-
tions where average precision falls, e.g., if only a very low share,
less than 1%, of a city is destroyed. For applications requiring
high precision in heavily imbalanced prediction problems such
as the monitoring of several cities, we believe that the real use
case for our approach will be in a decision-support framework,
in which the predictions are combined with human verifica-
tion to create much faster and accurate on-the-ground violence
detection. Iterations between machine learning and human veri-
fication can also help in improving the training process (30) and
could be easily integrated in our approach.

The performance of our method could be further improved
by increasing the size of the training dataset, which could also
help adapt it to classify destruction in other war zones around
the globe. Further performance improvement could be achieved
through fine tuning, a common practice in deep learning in
which the network is pretrained with a large sample of building
destruction from a variety of contexts in the first step and then
refined by training on heavy weaponry destruction. This could be
implemented by using a recent public dataset of natural-disaster
destruction imagery that provides a sample of 98,000 annotated
buildings across three levels of damage (31). Moreover, domain-
adaptation techniques developed for deep learning could be used
to try to further minimize the remaining domain biases (32).

Our label-augmentation technique is driven by strong assump-
tions and should therefore be regarded only as a first step in
understanding the dynamic classification of building destruction
over time. A particularly fruitful direction for future research
could be to model the data-generating process of what we call
the “uncertain class” between changing labels and after the last
label date. This should then be combined with label smoothing

to generate probabilistic labels (33). Such a holistic approach
would also need to think about label priors regarding the recon-
struction process. Future applications of such an approach would
then be able to augment the human-classification process of ver-
ifying violence—so-called digital humanitarians (34)—and track
the postwar recovery within the same classifier model.

The destruction data that can be generated with monitor-
ing approaches such as the one presented in this article open
up possibilities for a set of new research agendas in the social
sciences (35). For example, our approach may advance the aca-
demic literature on understanding the microlevel determinants
of violence (36–42). At what stage in a conflict is building
destruction used? What can be done to reduce civilian fatal-
ities during urban warfare? What are the effects of building
destruction on displacement compared to other kinds of vio-
lence such as small firearms? Can reporting-based violence data
be used to reduce error in the remote-sensing exercise, or
can combined measures be developed (43, 44)? Can destruc-
tion data be used to reveal biases in reporting-based mea-
sures? An additional potential application of our method is
conflict-forecasting systems, like the “Violence Early-Warning
System,” which rely on spatial violence dynamics in their
forecasts (45).

Finally, there are important ethical concerns in war-
destruction monitoring that should be considered. Research in
the social sciences has shown that monitoring tends to reduce
armed violence between states, but there are also examples
where the opposite is true (46, 47). Theoretically, we can iden-
tify specific scenarios in which monitoring worsens the situation
on the ground. If local actors are using the flow of informa-
tion about atrocities to displace population and do not fear
repercussions linked to the monitoring of these atrocities, then
monitoring itself can increase violence and should, therefore, not
be conducted publicly.

Materials and Methods
Analysis. The CNN model was built and trained in Tensorflow. Analysis was
performed in QGIS, Python, R, and Stata.

Materials and Data Availability. Detailed explanations of methods in this
study are provided in SI Appendix. All main code is available at GitHub
(https://github.com/monitoring-war-destruction) (48). The repository pro-
vides all programming codes for image preprocessing and label augmen-
tation, as well as first- and second-stage training and testing. All data is
provided in the repository, except for the satellite imagery which cannot be
provided due to copyright restrictions.
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